Barth syndrome

What causes Barth syndrome?

Barth syndrome is caused by mutations in the TAZ gene, which is located on the X chromosome. The TAZ gene provides "instructions" for a group of proteins called tafazzins that serve at least two functions. First, these proteins play a role in the maintenance of the inner membranes of structures inside cells called mitochondria. Cells depend on mitochondria to produce the energy they need. Tafazzins are supposed to make sure that the concentration of a specific fat (cardio-lipin) is sufficient to maintain energy production inside the mitochondria. Tafazzins also promote the development of bone cells. Mutations in the TAZ gene that cause Barth syndrome disrupt the protein's ability to function correctly, thereby causing the signs and symptoms of Barth syndrome.

Last updated on 05-01-20

Is genetic testing available for Barth syndrome?

Genetic testing is available for Barth syndrome. GeneTests lists laboratories that are offering clinical genetic testing for this condition. To view the contact information for these laboratories, click here. Please note that most of the laboratories listed through GeneTests do not accept direct contact from patients and their families; therefore, if you are interested in learning more, you will need to work with a health care provider or a genetics professional.

Last updated on 05-01-20

How is Barth syndrome diagnosed?

Barth syndrome may be diagnosed during infancy or early childhood (or, in some cases, at a later age), based upon a thorough clinical evaluation, identification of characteristic physical findings, a complete patient and family history, and a variety of specialized tests. Experts indicate that a diagnosis of Barth syndrome should be considered for any male infant or child with dilated cardiomyopathy of unknown cause (idiopathic); low levels of circulating neutrophils (neutropenia); elevated urinary levels of 3-methylglutaconic acid (aciduria); abnormal mitochondria within heart muscle; and/or muscle abnormalities (myopathy) of unknown cause that occur in association with growth retardation. For infants and children with signs of cardiomyopathy, metabolic screening tests should be conducted, including studies to measure levels of 3-methylglutaconic acid and other organic acids in the urine and blood. An elevated urinary level of 3-methylglutaconic acid (3-methylglutaconic aciduria) has been recognized as a diagnostic sign of Barth syndrome. Persistent low levels of neutrophils in the blood help to confirm the diagnosis in combination with these other signs. Diagnosis may also be confirmed via genetic testing.

Last updated on 05-01-20

How is Barth syndrome inherited?

The malfunctioning gene that causes Barth syndrome is located on the X chromosome, and Barth syndrome is inherited in an X-linked recessive manner. Chromosomes, inside the nucleus of human cells, carry the genetic information for each individual. Human body cells normally have 46 chromosomes - 23 inherited from each parent. Pairs of human chromosomes are numbered from 1 through 22 and the sex chromosomes are designated X and Y. Males have one X and one Y chromosome, and females have two X chromosomes.

X-linked recessive genetic disorders are conditions caused by an abnormal gene on the X chromosome. Females have two X chromosomes but one of the X chromosomes is "turned off" and all of the genes on that chromosome are inactivated. Females who have a disease gene present on one of their X chromosomes are considered carriers for that disorder. Carrier females usually do not display symptoms of the disorder because it is usually the X chromosome with the abnormal gene that is "turned off", and they have another X chromosome with a working copy of the gene. A male has only one X chromosome. Therefore, if he inherits an X chromosome that contains a non-working gene, he will develop the disease that is associated with that gene. This is why Barth syndrome occurs exclusively in males.

Males with X-linked disorders pass the disease gene to all of their daughters, who will be carriers. A male cannot pass an X-linked gene to his sons, because males always pass their Y chromosome instead of their X chromosome to male offspring (which is what makes the offspring male). A female carrier of an X-linked disorder has two X chromosomes and will always pass one of them onto her offspring (whether it is male or female). Female carriers of and X-linked disorder have a 25 percent chance with each pregnancy to have a carrier daughter like themselves, a 25 percent chance to have a non-carrier daughter, a 25 percent chance to have a son affected with the disease, and a 25 percent chance to have an unaffected son. In some instances, the mother of an affected male may not be a carrier for Barth syndrome and there is no apparent family history of the disease. In such cases, the disorder appears to result from a new mutation of the gene on the X chromosome of the affected individual that occurred randomly for unknown reasons (sporadically).

Last updated on 05-01-20

What is Barth syndrome?

Barth syndrome is a metabolic and neuromuscular disorder, occurring almost exclusively in males, that primarily affects the heart, immune system, muscles, and growth. It typically becomes apparent during infancy or early childhood, but the age of onset, associated symptoms and findings, and disease course varies considerably among affected individuals. The main characteristics of the condition include abnormalities of heart and skeletal muscle (cardiomyopathy and skeletal myopathy); low levels of certain white blood cells called neutrophils that help to fight bacterial infections (neutropenia); and growth retardation, potentially leading to short stature. Other signs and symptoms may include increased levels of certain organic acids in the urine and blood (such as 3-methylglutaconic acid), and increased thickness of the left ventricle of the heart due to endocardial fibroelastosis, which can cause potential heart failure. Barth syndrome is caused by mutations in the TAZ gene and is inherited in an X-linked recessive manner. Treatment is directed toward the specific symptoms that are apparent in each individual.

Last updated on 05-01-20

How might Barth syndrome be treated?

The treatment of Barth syndrome is generally directed toward the specific symptoms that are apparent in each individual. Treatment may require the coordinated efforts of a team of medical professionals which includes a pediatrician, pediatric cardiologist, hematologist, specialist in the treatment of bacterial infections, physical therapist, occupational therapist, and/or other health care professionals. Many infants and children with Barth syndrome require therapy with diuretic and digitalis medications to treat heart failure. Some affected children are gradually removed from such cardiac therapy during later childhood due to improvement of heart functioning. For affected individuals with confirmed neutropenia, complications due to bacterial infection are often preventable by ongoing monitoring and early therapy of suspected infections with antibiotics. For example, antibiotics may be provided as a preventive (prophylactic) therapy during neutropenia to prevent the onset of infection. Other treatment for this disorder is typically symptomatic and supportive.

Last updated on 05-01-20

Name: Metabolic Support UK 5 Hilliards Court Sandpiper Way
Chester Business Park
Chester, CH4 9QP, United Kingdom
Phone: 0845 241 2173 Toll Free: 0800 652 3181 Email: https://www.metabolicsupportuk.org/contact-us Url: https://www.metabolicsupportuk.org
Name: United Mitochondrial Disease Foundation 8085 Saltsburg Road, Suite 201
Pittsburgh, PA, 15239 , United States
Phone: +1-412-793-8077 Toll Free: 1-888-317-8633 Fax : +1-412-793-6477 Email: info@umdf.org Url: https://www.umdf.org
Name: Barth Syndrome Foundation 2005 Palmer Avenue #1033
Larchmont, NY, 10538, United States
Phone: 914-303-6323 Toll Free: 855-662-2784 or 855-NO-BARTH Fax : 518-213-4061 Email: bsfinfo@barthsyndrome.org Url: http://www.barthsyndrome.org
Name: Cardiomyopathy Association Chiltern Court Asheridge Road
Unit 10 Chesham Buckinghamshire HP5 2PX
United Kingdom
Phone: +44 01494 791 224 Fax : +44 1923 249 987 Email: contact@cardiomyopathy.org Url: http://www.cardiomyopathy.org
Name: Children's Cardiomyopathy Foundation P.O. Box 547
Tenafly, NJ, 07670 , United States
Toll Free: 866-808-CURE (2873) Fax : 201-227-7016 Email: info@childrenscardiomyopathy.org Url: http://www.childrenscardiomyopathy.org/
Name: Neutropenia Support Association, Inc. 971 Corydon Avenue P.O. Box 243
Winnepeg, Manitoba, R3M 3S7
Canada
Phone: 204-489-8454 Toll Free: 800-663-8876 Email: stevensl@neutropenia.ca Url: http://www.neutropenia.ca
Name: American Heart Association 7272 Greenville Avenue
Dallas, TX, 75231-4596, United States
Phone: 214-570-5978 Toll Free: 800-242-8721 Email: https://www.heart.org/en/forms/general-questions-and-latest-research-information Url: https://www.heart.org
Name: Primary Immune Deficiency UK PID UK PO Box 6970
Basingstoke, RG24 4XL, United Kingdom
Toll Free: 0800 987 8986 Email: hello@piduk.org Url: http://www.piduk.org/

Connect with other users with Barth syndrome on the RareGuru app

Do you have information about a disease, disorder, or syndrome? Want to suggest a symptom?
Please send suggestions to RareGuru!

The RareGuru disease database is regularly updated using data generously provided by GARD, the United States Genetic and Rare Disease Information Center.

People Using the App

Join the RareGuru Community

To connect, share, empower and heal today.

People Using the App